Exuberant E-Textiles

E-textiles, a subset of smart textiles, is the integration of electronics and computing in fabric.


+ Attaching sensor to apparel, using classical electronic devices, such as conductors, integrated circuits, LEDs, and conventional batteries embedded into garments.

+ Integrating electronics directly into the textile fiber substrates. Creating passive electronics such as conductors or active components like transistors, diodes, and solar cells.

+ Ability to sense, react, and adapt their behavior to the given circumstances.

[ USES ]

Will be developed in fields such as: Health, Military, Sports, Aerospace, Interior Design, Entertainment, and Art.

+ Quantified self: logging of heart rate, respiration rate, temperature, activity, posture, fatigue, injury, insulin, cortisol levels, blood pressure, microbial cells, sequence DNA, sleep cycles.

+ Physical training or therapy - regulate body temperature, reduce wind resistance, and control muscle vibration.

+ Regain or strengthen sensory perception.

+ Detect and guard against hazard or extreme environment.

+ Augmented reality.

+ Conduct energy.


+ Conductive Textile : fabric that can conduct electricity. Can be made with metal strands woven into the construction of the textile. Semiconducting textiles, made by embedding normal textiles with carbon or metal-based powders. Electrically conductive fibers can also be produced by coating the fibers with metals, galvanic substances or metallic salts.

+ Conductive Fibers : non-conductive or less conductive substrate, then either coated or embedded with electrically conductive elements, often carbon, nickel, copper, gold, silver, or titanium. Substrates typically include cotton, polyester, nylon, and stainless steel to high performance fibers such as aramids and PBO.

+ Conductive Inks : must contain appropriate highly conductive metal precursor such as Ag, Cu, and Au NPs and carrier vehicle. Most are water based: water being the main ink component and to limit contaminants, must be as pure as possible. Can be printed onto textiles to create electrically active patterns. Screen printing also makes integration with planar electronics simpler than with conductive yarn systems.

+ Stretch Sensors : component that changes resistance when stretched. Relaxed - sensor material has a nominal resistance of 1000 ohms per linear inch. Stretched - resistance gradually increases. When stretched 50 % its resistance will approximately double to 2.0 Kohms per inch. Textile is in contact with the skin in order to monitoring the body.

+ Pressure Sensors : capacity for some system to sense the force exerted on a surface per unit area and express that force in the strength of an electric signal. Can be used to measure force, and in some cases, to determine the contour of an applied force.

+ Electrochemical Sensors : device that provides continuous information about its environment. Main types of electrochemical sensors: potentiometric, amperometric and conductometric.

+ Electroluminescent Fabric : gives off light after being exposed to electricity.

EL wire needs a high voltage, roughly 100 volts, to glow brightly.

Composed of layers :

[1] Core layer - copper wire that conducts with an alternating current power system

[2] Coating of electroluminescent phosphor that emits light

[3] Two wires wrapped around the phosphor completing circuit

[4] Plastic sheaths protecting the phosphor material and user from electric shocks

+ Light Emitting Diodes : LEDs are small light bulbs designed to fit into electrical circuits.

Light is created as a byproduct of electron motion within semiconductor material. Electrons move from high energy states to lower ones, releasing photons. LEDs harness and focus the photons into the bulbs.

+ Polymer Light Emitting Diode : PLED display is a thin, flexible film composed of polymers with capabilities of emitting the full color spectrum of light. Made of organic molecules, there fore also known as OLEDs.

Composed of layers :

[1] Glass / plastic substrate - for fabric displays, plastic is less fragile but more flexible than glass.

[2] Transparent electrode coating, applied to one side of the substrate.

[3] Coating on same side of substrate with the light emitting polymer film.

[4] Evaporated metal electrode, applied to other side of the polymer film.

+ Microprocessor : also know an CPU or central processing unit, is a complete computation engine fabricated on a single chip.

+ Graphene : atomic-scale hexagonal lattice made of carbon atoms. Graphene can replace synthetic fibres (polyester, nylon), due to lightness, greater elasticity, and greater conductivity resistance. Graphene can reduce weight in clothes, and decrease the storage volume of them. It uses ecological manufacturing technology, without any organic solvents, free from oil by-products.


[1] Material quasi two-dimensional

[2] Low density

[3] High level of transparency

[4] High electrical and conductivity resistance

[5] High thermal conductivity

[6] High modulus of elasticity, good resistance to deformation

[7] Stronger than diamond

[8] Can be used as electronic and temperature-sensor

[9] Water repellency

+ Thermochromic Fabric Displays : thermos, meaning hot, chroma meaning color, the substance changes color as it changes temperature with a special dye acting as the thermochromic agent.

Elements in thermochromic dyes relying on chemical reactions :

[1] Liquid crystals - contained in tiny capsules, these are cholestric, also known as chiral nematics, meaning its molecules arrange themselves in a very specific helical structure - reflecting certain wavelengths of light. As the liquid crystals heat up, the orientation of the helices changes - causing helices to reflect a different wavelength of light. To the eyes, the result is a change in color. As they cool down, they reorient themselves into their initial arrangements and the original color returns.

[2] Micro-encapsulate thermochromic system - thermochromic dye contains millions of capsules that look a little like an organic cell. Each capsule has an outer membrane and contains an organic, hydrophobic solvent, making it less likely that water will dilute or wash out the chemicals in the dye. The solvent contains particles of a color developer and a dye precursor. As the capsule heats up, the solvent melts and a chemical reaction causes the color developer to donate a proton to the dye precursor. This causes the precursor to develop into the dye itself and change color. When the dye cools down, the developer and precursor separate, the solvent resolidifies and the color returns to its original state.

+ Fur Fabric Displays : static electricity starts at the atomic level. Since similar charges repel one another, the fur moves as far away from the base of the material and other strands of fur, causing the strands to stand on end.


#FashionTechnology #FutureofFashion #Etextiles #SmartTextiles #fashiontech #fashiondesign #fashiontechguide #etextilesguide


  • Pinterest
  • Instagram